New Ways in IGBT Control: Electrical Plugging – Optical Transmission

Industrial drive engineering with its automated manufacturing processes would be hardly conceivable without electric motors. IGBT semiconductor elements control powerful electrical drives whose connection is realized by way of polymer optical fibres for the required isolation. This solution however, is space-intensive and sensitive. 

New Ways in IGBT Control: Electrical Plugging – Optical Transmission

The power consumption of the electric motors used as a drive technology can reach several kW or even MW. At constant speeds, their control technology is relatively simple. But the motor speed often needs to be adjustable, which makes the whole thing more complicated immediately. 

In the higher power classes such as traction control in trains or ship propulsion systems, the speed is controlled by way of IGBT semiconductors. These are able to switch great loads with very little driving power. The signals required for IGBT control are transmitted by means of polymer optical fibres (POF) because the isolation and voltage requirements to be met are very high. Six IGBT driver boards are currently required per phase 2 to control a three-phase motor. The PO fibres meanwhile realize interference-free and electrically isolated signal transmission. 

Especially where locomotives are concerned, IGBTs are provided redundantly so that the controller board can transfer the function to the redundant component and ensure the functionality of the system if an IGBT fails. This is attended by a doubling of the optical transmission distances. The connection between the controller and driver board meanwhile used to be provided by individual fibres in the past. The electro-optical signal conversion takes place in the transceivers of the circuit board, with optical contacts establishing the connection to the fibres.  Every optical fibre has an individual port with the transceiver in it on the driver board as well as the controller board. This previous solution meant that all the sending and receiving elements took up a lot of space on the controller board, which made the board unnecessarily large. 

Another disadvantage is the fact that the various PO-fibres need to be plugged in at the right places in service calls and in their installation, as every fibre needs to be connected to the driver board and controller board individually. This alignment needs to be done attentively and takes some time and care. The sender and receiver must not be mixed up for correct operation. 

 

Optical elements developed for industrial applications

To guarantee the quality of the fibre end surface, the cables used are prefabricated, and can also be individually installed by the user on site. 

The customarily used optical elements were basically developed for industrial applications with expanded temperature ranges and increased vibrations, but only offer the fibres a simple strain relief. What is also important is that the optical interface needs to be consistently protected from soiling. This even makes protective covers necessary in an unplugged state. 

Post-hoc equipment of the controller board with optical elements is also impossible as they are not reflow-capable at this point in time. So if a transceiver breaks, one had to disconnect, replace and reconnect the entire board with all its contacts in the past, which was in turn attended by additional costs and labour.

In cooperation with established rail vehicle manufacturers, HARTING has developed the solution of a transmission principle that involves relocating the controller board’s transceivers to a pluggable module and thus integrates the optical interface true to the motto “electrical plugging and optical transmission”. 

For the electrical plugging and system housing, HARTING relies on solutions from the DIN 41612 range.  The DIN housing is made from die-cast zinc and meets the railway market’s increased requirements for robustness and EMC. It offers the possibility to run the cables straight or angled, and thus integrates an optimal kink-protection and strain relief for the fibres. In addition, the circuit board in the DIN housing is able to accommodate series resistors and decoupling capacitors as required for error-free control of the optical elements and for excluding interferences. The electrical contacts in the DIN 41612 range are also resistant to micro-vibration wear and thus even tested and were approved for railway applications.

 

Data rates of up to 50 Mbit/s

The active-optical POF module enables the client to connect up to 16 optical channels at the same time on the smallest assembly space. Installation and service can be simplified and abridged as a consequence. HARTING furthermore offers its clients customized systems that are designed and tested in keeping with their requirements. The integration of the optical interfaces in a quickly replaceable plug-in connector additionally makes servicing the controller boards used faster, easier and cheaper.

The system furthermore supports data rates of up to 50 Mbit/s, which will normally not be required, however, thanks to the high edge steepness of the sender elements used. 3.3 and 5 volts are both available as supply voltages here. 

In the first step, the new DIN connections will only be installed in the controller boards. The IGBT driver boards will remain unchanged for now to enable an easy transition to the new system. Thanks to this incremental approach, not all the required components will need to be adapted immediately. But the applied principle can be transferred from the controller board to the IGBT driver board in future, also enabling the realization of bi-directional optical plugging and electric transmission there by way of a compact D-sub housing. The result would be the creation of a bilateral active-optical cable for IGBT control. This way, a robust and service-friendly solution from the railway sector can also be adapted in industrial applications in the future.

BussmannRainer

Rainer Bussmann, 
Senior Product Manager, 
Interface Connectors Fibre Optic / Medical / har-link,
HARTING Electronics

Portrait_Jonas_Diekmann_microcontrast_web

Jonas Diekmann, 
Special Editor, 
HARTING Electronics

Click Image to Enlarge
Grafik-WP-IGBT---tec.News-32_Vergleich
Partner Articles | 6.6.2018

Latest articles

It’s About “Time”

At Bentley Systems, we have been talking to our users, especially owners, and it has become clear that despite our collective best efforts, there is a gap in the market.  Owners need easy access to real-time, accurate, engineering information and they need tools that make it simple to keep engineering data up-to-date, especially those engaged in brownfield and revamp projects.  It takes too much time and effort to gather and verify the information they need to make decisions effectively. And for older plants that do not have 3D models, there is simply no visual way to verify and check information easily.

Partner Articles | 10.12.2018

Energy savings 4.0

We have all read about it: leak detection should be a top priority since, if no leak detection program has been implemented, leaks can account for 30 to 40% of consumed volume. So, why is this issue still on the table? Why is it difficult to change things in the field?

Asset Management | 10.12.2018

How to Choose an Air Compressor, According to Science – 8 Factors to Consider

Buying an air compressor, for the first time, can be challenging in many ways. There is a lot going on behind this power tool that offers faster and more efficient performance. Before we get to know about the details of an air compressor then, let’s understand how it works. How do air compressors work?

Applications | 10.12.2018

Maintenance 4.0 hype or game changer?

Last September Antwerp (Belgium) hosted the Euromaintenance 4.0 conference. With 1187 participants from 64 different countries, the European maintenance federation EFNMS and the organisers BEMAS (Belgian Maintenance Association) and Reliabilityweb.com can look back on a very successful initiative. The massive interest and very positive vibe that prevailed confirm that maintenance 4.0 is currently at the centre of attention. But is this really justified? Isn't the whole buzz surrounding the Industrial Internet of Things (IIoT) just a hype that will have faded in a year's time?

Cmms | 10.12.2018

8 Ways to Identify and Eliminate Noise Hazards in the Workplace

Occupational noise hazards are one of the most common workplace safety concerns. Our hearing is sensitive and it does not take much to temporarily impair or permanently damage it. 

HSE | 10.12.2018

Bacterial Bandages, Natural Dyes and Recycled Fibres: Aalto Brings Materials Revolution to Slush

New materials play an important role in sustainable development and combatting climate change. New uses for old materials can also be a major industrial opportunity: for example, the value of biomass from forests in Finland can be doubled if used for manufacturing products of higher added value.

R&D | 4.12.2018

Maintenance: A Necessary and Important Function in the Future

Euromaintenance 2016 will take place in Athens at the end of May. It is the ideal moment to reflect on maintenance in a European context. Euromaintenance is known as the summit for all involved in maintenance across Europe, it’s the place to be. The conference, with the support of the EFNMS, is the only commercially independent conference covering the topics we deal with in the maintenance world.

EFNMS | 20.5.2016