Towards Better Asset Performance Modelling

Connecting IT with Operational and Engineering Technology will bring real benefits to Asset Performance Modelling.

shutterstock_125693939

In part 1 , released in Maintworld 3/2016, we reviewed how today’s engineering technology makes it possible to bring all required information together helping to track, access, and share with others collaborating on the project. Let’s now have a look how we can get all the benefits of this huge mass of information.

Making the Leap to Asset Performance Modelling

Taking the convergence of IT, OT, and ET one step further, it is now possible to enable real-time asset performance modelling, which ensures that assets are safe, reliable, and efficient over their operating life. For example, Bentley’s asset performance management software enables companies to develop both operational and asset strategies for improving reliability and maintaining asset performance and predictable production. 

Figure2_Asset_Performance

Figure 2: Asset performance monitoring brings together IT and OT with big data analytics.

Using a common data environment (CDE), companies can collect, consolidate, and analyse data and turn it into actionable intelligence. The software also helps ensure regulatory compliance and is aligned with asset management standards, including PAS 55 and ISO 55001. At the same time, it applies leading information modelling and information management technologies to asset operations and maintenance, and when combined with information delivered at handover from projects, provides a complete lifecycle information management solution for owner-operators. This enables owner-operators to optimize processes for the day-to-day running of assets, balancing capital and operational costs and maximizing production capability.

Many companies are already on their way to using these solutions, thanks to the widespread adoption of condition monitoring technologies. As shown in Figure 3, monitoring assets requires the integration of IT and OT systems, as well as big data analytics to discern patterns in data and automate or recommend optimal responses to them. 

Figure3_IT_OT_ET

Figure 3: Asset performance modelling integrates 3D models with IT and OT systems used to model asset performance.

To move to asset performance modelling, 3D digital engineering models across all disciplines are integrated with the IT and OT systems used for asset performance monitoring (see Figure 3). As the operating baseline for infrastructure assets, digital engineering models bring together schematics; engineering analyses; network models; 3D models; functional components, catalogues, and specifications, as shown in Figure 3.

It is helpful to think of digital engineering information as the digital DNA for infrastructure assets – down to every nut, bolt and screw. Just as doctors can analyse human DNA to anticipate health issues and personalize healthcare for better health outcomes, companies can harness the digital DNA of their assets to personalize asset maintenance for better TOTEX, maximized uptime and more.

For example, companies can manage the performance of their assets far more effectively when they have digital engineering models that intelligently bring together all infrastructure data. When IT and OT systems connect with this ET data, teams can view the asset performance history, see all failure alerts, geo-coordinate to the exact positioning within the infrastructure asset, and drill down into the 3D digital engineering model to determine the cause of the alarm. Then they can refer to the manufacturer’s degradation data, access maintenance and repair data information, and take corrective action – all in seconds.

Harnessing the Power of Continuous Surveying

Having an accurate frame of reference – for example, capturing precisely located photographs and videos and comparing these over time – allows companies to bring together OT, IT, and ET to support asset performance modelling. New, photogrammetric surveying methods allow systems to keep these frames of reference up to date. For example, Bentley’s ContextCapture software is being used to turn digital photography from UAVs and close-up ground shots into accurate as-operated 3D models of infrastructure assets.

Rather than producing a point cloud, the software generates a highly accurate 3D reality mesh that can be brought directly into a 3D engineering environment, and geo-coordinated for precise real-world location, to design in context or compare the digital engineering model with the reality mesh – highlighting differences between the digital design and the actual conditions.  

The 3D reality mesh can provide the digital frame of reference aligning all IT, OT, and ET data with the real world. Specific components of the reality mesh can be hyperlinked to relevant documents and schematics, historical performance data, and real-time asset monitoring dashboards. When events occur or alerts are triggered, users can navigate their assets through the 3D mesh and then drill down to related maintenance and repair manuals and more (see Figure 4). The entire experience is immersive, highly accurate, and based on the latest data.

Figure4_3D_mesh

Figure 4: Users can utilize 3D meshes as an immersive environment for visual operations.

Engineering in Context

These same technologies also allow designers to engineer – and reengineer – in context. For example, when making the decision to repair, replace or remove, rather than starting from scratch or using an existing design model, the engineer or designer can use the continuously surveyed model of the plant or asset as the accurate, 3D representation for the decision. They can walk through the model virtually and explore the options for adding or replacing with new equipment right in the context of the 3D reality mesh.

Once the engineering is approved and construction or replacement begins, the same continuous surveying technique can continuously generate a new 3D reality mesh to track progress and finally create the new point of reference for IT, OT, and ET. Everyone involved can instantly see conditions change as construction progresses – and once work is complete, owner-operators can continuously monitor and model assets to assess conditions, drill down into alerts and issues, take informed action, and optimize asset performance. 

Seamless Integration of Processes and Information

We are at an incredibly exciting convergence in the world of asset management. The ability to work in a comprehensive modelling environment, leveraging ContextCapture and 3D reality mesh technologies, and connecting with the Industrial Internet of Things through asset management and predictive analytics software, companies can converge their information technology, operational technology and engineering technology – and seamlessly integrate processes and information flows between them.

The next generation of engineers – digital natives – will no doubt find ways to exploit this convergence in unprecedented ways. We can realize immediate benefits today, by using these technologies to make more informed decisions regarding when to repair, retire, or replace assets so that they are safer, more reliable, and maximally efficient over their operating life.   

Bhupinder_Singh

Bhupinder Singh,
Chief Product Officer, Bentley Systems, 
bhupinder.singh(at)bentley.com 

Cmms | 22.11.2016

Latest articles

It’s About “Time”

At Bentley Systems, we have been talking to our users, especially owners, and it has become clear that despite our collective best efforts, there is a gap in the market.  Owners need easy access to real-time, accurate, engineering information and they need tools that make it simple to keep engineering data up-to-date, especially those engaged in brownfield and revamp projects.  It takes too much time and effort to gather and verify the information they need to make decisions effectively. And for older plants that do not have 3D models, there is simply no visual way to verify and check information easily.

Partner Articles | 10.12.2018

Energy savings 4.0

We have all read about it: leak detection should be a top priority since, if no leak detection program has been implemented, leaks can account for 30 to 40% of consumed volume. So, why is this issue still on the table? Why is it difficult to change things in the field?

Asset Management | 10.12.2018

How to Choose an Air Compressor, According to Science – 8 Factors to Consider

Buying an air compressor, for the first time, can be challenging in many ways. There is a lot going on behind this power tool that offers faster and more efficient performance. Before we get to know about the details of an air compressor then, let’s understand how it works. How do air compressors work?

Applications | 10.12.2018

Maintenance 4.0 hype or game changer?

Last September Antwerp (Belgium) hosted the Euromaintenance 4.0 conference. With 1187 participants from 64 different countries, the European maintenance federation EFNMS and the organisers BEMAS (Belgian Maintenance Association) and Reliabilityweb.com can look back on a very successful initiative. The massive interest and very positive vibe that prevailed confirm that maintenance 4.0 is currently at the centre of attention. But is this really justified? Isn't the whole buzz surrounding the Industrial Internet of Things (IIoT) just a hype that will have faded in a year's time?

Cmms | 10.12.2018

8 Ways to Identify and Eliminate Noise Hazards in the Workplace

Occupational noise hazards are one of the most common workplace safety concerns. Our hearing is sensitive and it does not take much to temporarily impair or permanently damage it. 

HSE | 10.12.2018

Bacterial Bandages, Natural Dyes and Recycled Fibres: Aalto Brings Materials Revolution to Slush

New materials play an important role in sustainable development and combatting climate change. New uses for old materials can also be a major industrial opportunity: for example, the value of biomass from forests in Finland can be doubled if used for manufacturing products of higher added value.

R&D | 4.12.2018

Maintenance: A Necessary and Important Function in the Future

Euromaintenance 2016 will take place in Athens at the end of May. It is the ideal moment to reflect on maintenance in a European context. Euromaintenance is known as the summit for all involved in maintenance across Europe, it’s the place to be. The conference, with the support of the EFNMS, is the only commercially independent conference covering the topics we deal with in the maintenance world.

EFNMS | 20.5.2016