Using Spectrum Analysis of Recorded Ultrasounds

Airborne & Structure-borne ultrasound instruments have become a perfect complement to infrared and vibration analysis tools. Mechanical and electrical diagnosis can be done through ultrasound imaging.

Using Spectrum Analysis of Recorded Ultrasounds

 

 

Messer_Adrian_UE_SystemsMV

Adrian Messer, CMRP, Manager of US Operations,

UE Systems, Inc.,

adrianm@uesystems.com

 

 

Ultrasound can no longer be considered just a leak detector, and most would consider ultrasound a must have technology for any maintenance & reliability programme. Advancements in instrumentation and software have allowed the users of these instruments the ability to accurately diagnose electrical conditions such as corona, tracking, and arcing.

Mechanical inspections include diagnostics such as bearing faults, pump cavitation, and valves. However, using the concept of ultrasound imaging, one can diagnose mechanical failures in rotating equipment, and electrical conditions such as corona, tracking, and arcing.

Traditional inspection of electrical components has been performed using an infrared camera. Users of this technology rely on images showing temperature changes that may represent electrical anomalies such as tracking and arcing. For mechanical inspection, vibration analysis has been the conventional method of inspection for condition monitoring of rotating equipment.

artkuva

A motor and pump combination. PUMP 5.MTROB // S=37 // 38 Db // 30kHz // 88.0F // REC=13 // 06.06.2011 13:42

Vibration analysis produces a visual spectrum or time waveform that shows any fault harmonics. If the goal is to have a truly world class predictive maintenance programme, the use of multiple technologies is recommended for various inspections. Just as a physician uses multiple tools to take vitals and diagnostics to determine aches, pains, and abnormalities, maintenance professionals should take the same approach when it comes to the assets that we are responsible for in our facilities.

In addition to using infrared and vibration, ultrasound can be used to complement other PdM technologies. Airborne and structure-borne ultrasound can also give the user an image to analyse, diagnose and confirm mechanical and electrical conditions.

Ultrasound technology and instrumentation has evolved into a must have technology for both condition monitoring and electrical equipment reliability applications. The concept of ultrasound imaging is to record ultrasounds heard via the ultrasound instrument, and then play back those recorded sounds in spectrum analysis software.

fig1ja2

Left: Pump 3 MTR OB (Good). Right: Pump 4 MTR OB (Bad).

This will provide the inspector with an audible sound heard in the field during the inspection and a visual image or spectrum of the recorded ultrasound. This method will help to reduce the subjectivity of only relying in changes in the decibel level and changes in the sound tone or quality heard by the inspector.

Gives Complementary Data in Mechanical Inspections

Reciprocating compressor valves are very noisy and produce a lot of extraneous vibration. By isolating the sound with the advantage of the short-wave nature of ultrasound, it is possible to listen to and view the sounds of these noisy valves in real time, and to determine when a valve is leaking.

How would you imagine the sound of a good compressor valve? As it opens and closes, there will be a definite pronounced clicking. What about a bad valve? The bad compressor valve has a much longer time period when it is open before closing.

Figure above shows a motor and pump combination. The motor was a 60hp powering a pump that was pumping water. The image below was taken while the data was collected. This will be a comparison between two of the eight total motors and pumps.

While collecting data, both decibel readings and sound files were recorded. The screen shots above show a comparison between the points “PUMP 3 MTROB 007” and the “PUMP 4 MTROB 010”. The images are FFT images from spectrum analysis software that plays back recorded ultrasound sound files. This software is available with ultrasound instruments that have onboard sound recording capability.

kuva3

Pump 4 MTR OB from ultrasound instrument. Notice the distinct 175.8Hz harmonics detected.

Notice the difference between the two points. Both motors are operating under the same conditions, but the Pump 4 MTR OB point has a much different spectrum. If you were listening through the headset of the ultrasound instrument, it would also have a much different sound. Another image of the Pump 4 MTROB point, captured from onboard the ultrasound instrument, can be seen below.

The spectrum analysis software used has a built-in bearing fault frequency calculator. By entering in the speed (rpm) and the number of balls (bearings), an outer race, inner race, ball pass, and cage frequency will be calculated. For this particular motor, the speed was 1750rpm and the type and number of bearings was confirmed and the number of bearings was 10.

The fault frequency calculated by the spectrum analysis software that was of interest was an inner race fault at 175Hz. This is the same fault harmonic detected on the ultrasound instrument.

Improves Safety in Electrical Inspections

One application for ultrasound that has seen the largest increase in usage over the last several years is for electrical inspection. Ultrasound can be used to listen for electrical conditions such as corona, tracking, and arcing. Each anomaly has a distinct sound, and can easily be identified and confirmed through the use of ultrasound imaging.

Ultrasound should be considered by anyone performing electrical inspections with infrared. Before opening any energized electrical panel, a pre-inspection with ultrasound should be performed. The ultrasound emissions can be heard through vent openings, cracks/seals around the door, or through the use of an ultrasound port. If a suspect sound is heard, the sound can be recorded and then analyzed to determine the condition (corona, tracking, or arcing).

kuva4

Corona (FFT)

Corona, the ionization of air surrounding an electrical connection above 1000 volts, is heard using the ultrasound instrument as a steady, uniform, static sound. When looking at the recorded ultrasound of corona in spectrum analysis software, very distinct and evenly spaced peaks or harmonics can be seen.

The harmonics appear every 60Hz. This would also be noted as 50Hz harmonics if you were in a country where 50Hz electrical current is used. You can also see frequency content, peaks within the peaks, between the 60Hz harmonics. These are signature features to look for when analyzing recorded ultrasounds of corona.

Being able to detect corona with ultrasound is particularly helpful because corona typically does not produce significant heat to be detected with infrared. It does however have a very distinct sound. If an inspector were relying solely on infrared, this condition would have gone undetected.

With electrical inspection, the well-defined 60Hz (or 50Hz) harmonics will diminish as the condition becomes more severe. The example below is from a recorded sound file of Tracking. Tracking, commonly referred to as destructive corona or baby arcing, has a different sound than that of corona. Tracking typically has a more distinct continuous frying and popping sound. Also, notice the increased amplitudes indicating a more intense sound versus the amplitudes of corona.

kuva5ja6

Tracking (left) and Arcing.

The analysis of arcing is even more evident of the loss of the uniform 60Hz harmonics. With arcing, the electrical discharge becomes more erratic and has sudden starts and stops of the discharge. This can be seen in the time series view of a recorded sound file of arcing.

As individuals responsible for the condition and reliability of the assets in our facilities, we should want to use as many tools as we can to inspect those assets. Through the proper use of multiple PdM tools, the data that we collect with those tools can give us better results, and more potential failures can be detected.
The concept of ultrasound imaging or recording and analyzing ultrasounds via an ultrasound instrument is fairly new when compared to other technologies. However, the use of ultrasound for both mechanical and electrical inspections is growing. The spectrum analysis of recorded ultrasounds can enhance diagnostic accuracy, and reduce the subjectivity of only comparing decibel readings and changes in the tone of the sound heard by the inspector.

Applications | 20.11.2015

Latest articles

Research report: Predictive Maintenance 4.0

A growing number of companies want to use big data analytics in their predictive maintenance and are also investing in the resources needed for this. Of the companies already using this technology, no less than 95 percent say that they have already achieved concrete results. This is the conclusion of a follow-up study conducted by PwC and Mainnovation among 268 companies in the Netherlands, Germany and Belgium.

Asset Management | 17.1.2019

12 Helpful Tips for Doing IT Service Desk

Over the years, the evolution of technology and the adaptability of the people to it, has been increasing drastically. This process has brought about a boom in the service sector, making the IT subunit of it, the most successful.

Cmms | 27.12.2018

It’s About “Time”

At Bentley Systems, we have been talking to our users, especially owners, and it has become clear that despite our collective best efforts, there is a gap in the market.  Owners need easy access to real-time, accurate, engineering information and they need tools that make it simple to keep engineering data up-to-date, especially those engaged in brownfield and revamp projects.  It takes too much time and effort to gather and verify the information they need to make decisions effectively. And for older plants that do not have 3D models, there is simply no visual way to verify and check information easily.

Partner Articles | 10.12.2018

How to Choose an Air Compressor, According to Science

Buying an air compressor, for the first time, can be challenging in many ways. There is a lot going on behind this power tool that offers faster and more efficient performance. Before we get to know about the details of an air compressor then, let’s understand how it works. How do air compressors work?

Applications | 10.12.2018

8 Ways to Identify and Eliminate Noise Hazards in the Workplace

Occupational noise hazards are one of the most common workplace safety concerns. Our hearing is sensitive and it does not take much to temporarily impair or permanently damage it. 

HSE | 10.12.2018

Bacterial Bandages, Natural Dyes and Recycled Fibres: Aalto Brings Materials Revolution to Slush

New materials play an important role in sustainable development and combatting climate change. New uses for old materials can also be a major industrial opportunity: for example, the value of biomass from forests in Finland can be doubled if used for manufacturing products of higher added value.

R&D | 4.12.2018

Maintenance: A Necessary and Important Function in the Future

Euromaintenance 2016 will take place in Athens at the end of May. It is the ideal moment to reflect on maintenance in a European context. Euromaintenance is known as the summit for all involved in maintenance across Europe, it’s the place to be. The conference, with the support of the EFNMS, is the only commercially independent conference covering the topics we deal with in the maintenance world.

EFNMS | 20.5.2016