Integrating Legacy Data into IoT Initiatives: Three Methodologies

Today’s factory floor is a melting pot of equipment, with the newest machines relying on technology that didn’t even exist when the oldest machines were built. Integrating data from different machine generations can be a huge challenge, but is vital when optimizing the plant floor and creating an effective Internet of Things (IoT) ecosystem. 

Legacy-Data-Image

Legacy equipment contains valuable data, but most legacy tools were not built for seamless data access. In fact, some legacy equipment was specifically structured to prevent direct integration for security reasons. 

In 2016, an IDG Research Survey found that 64 percent of senior IT manufacturing executives said that integrating data from disparate sources in order to extract business value from that data is the single biggest challenge of the IoT. Data integration has been a challenge for IT and Operations teams for years, but IoT makes the need for integration more urgent—and more challenging. 

For more than 20 years, Kepware has been helping customers access their industrial data in order to extract meaning and value from that data. In that time, we have seen the benefits and drawbacks of different approaches to incorporating legacy equipment into IoT initiatives. These are the three main approaches—and their key benefits and potential trade-offs—that manufacturers have traditionally taken (and will continue to take) when integrating legacy tools with their IoT initiatives. 

 

Approach 1: Rip-and-Replace

A “rip-and-replace” approach involves fully scrapping legacy equipment and replacing it with modern, IoT-enabled machinery. It is often attractive in theory (who wouldn’t want the best and most efficient equipment across the plant floor?), but in practice can be hampered by time sinks and budget restrictions. Sourcing activities (such as developing RFPs and vendor negotiations), uninstalling current equipment, installing new equipment, ensuring appropriate vendor support during the installation phase and re-training employees are just a few of the challenges inherent in this approach. Combined with the cost of new equipment, rip-and-replace is often unrealistic for most organizations. However, replacing outdated assets ensures an organization can reap the benefits of the most up-to-date technology, including improved performance, lower power consumption and readiness for next-gen features, such as augmented reality (AR). 

A large-scale rip-and-replace also has ramifications beyond the plant floor. Investing in this option may require an organization to forgo other lucrative investments. On the other hand, the benefits of enterprise-wide visibility into operational KPIs may be enough to make it worthwhile. So if the immediate cost and time concerns can be overcome, this approach can be lucrative over the long-term as it creates an efficient, future-focused factory.

 

Approach 2: Best-of-Breed Third-Party Solution 

Also referred to as a “retrofit” or “wrap-and-extend” solution, this method involves using third-party, IoT-ready connectivity solutions—such as OPC servers, IoT platforms, IoT Gateways and sensors—that extend the capabilities of legacy equipment. A Best-of-Breed approach enables communication to the legacy protocols used by the equipment (or by the equipment’s components), such as PLCs, control applications and embedded sensors. It can also involve adding sensors that directly measure KPIs and make this data accessible to the IoT. Best-of-Breed solutions are IoT-ready and reach beyond the plant floor to provide visibility into operational data for the entire enterprise. 

The impact of a best-of-breed third-party solution on the enterprise as a whole depends on how the data is used. By gathering integrated data from both legacy and modern machines, this approach has the potential to enhance decision-making at all levels of an organization, and includes the added benefit of being extremely customizable to different needs. 

One drawback to this approach is that it often requires factories to upgrade their networks. Best-of-breed third-party solutions are capable of collecting huge amounts of data, and the bandwidth necessary to transmit that data can result in extra costs. Edge-based processing—which enables down-sampling or summary analytics before the information is sent to an IoT solution—can help mitigate this issue. A best-of-breed approach can be beneficial for organizations that need to integrate legacy equipment quickly and efficiently.

 

Approach 3: In-House Solutions

In-house solutions are typically created by internal personnel using internal technical resources, and are fully supported in-house. An in-house approach ensures that an organization’s specific, unique goals are met. And because the organization has direct control over its resources, technicians are more likely to be readily available to make changes. However, there may be more demands on the in-house IoT-support team than they can meet in a timely manner. They will be responsible for bug fixes, troubleshooting, training, product improvements and maintenance. This might not seem like much at first, but can add up over the lifespan of an IoT solution.

In addition, after a legacy asset is connected, that data needs somewhere to go. Collecting data is one challenge, but displaying it, analyzing it, or otherwise turning the data into actionable intelligence in a timely and useful manner is a whole other issue. Technicians that are experts in both connectivity and IoT application development are hard to come by. And if your lead technician were to leave the company, could you find a suitable replacement?

 

What Approach Works Best for You?

Each of these approaches can serve to optimize data access for an organization. But, the best approach will almost certainly involve working with a myriad of IoT solutions and vendors, bringing some internal resources to bear and replacing some equipment. For example, instead of full rip-and-replace, you might replace just some outdated equipment while keeping other legacy equipment and incorporating plug-and-play sensors—taking the best of different approaches to fit your business needs. Striking the right balance will involve considering the specific goals of your organization and making strategic trade-offs, with a focus on staying competitive and efficient into the future. 

JBates

Jeff Bates, Product Manager
PTC

Applications | 29.3.2018

Latest articles

AMS Device Manager software adds support for the Beamex MC6 documenting calibrator, simplifying compliance

Emerson has updated AMS Device Manager asset management software to support the Beamex MC6 documenting calibrator, adding electronic workflows that eliminate up to 50 percent of time spent on each calibration.

Applications | 16.5.2018

Caverion to be in Charge of the Monitoring and Maintenance of the Second-largest Open Data Centre in the Nordics

Caverion and Telia Finland have signed a contract covering the control room operator services and property maintenance of the new Telia Helsinki Data Center. The open data centre to be built in the Pitäjänmäki district in Helsinki will be the most secure, energy efficient and environment-friendly data centre in the Nordic countries.

Asset Management | 11.5.2018

EU Agency for Safety and Health at Work Launches Europe-Wide Awareness-Raising Campaign on Dangerous Substances

The European Agency for Safety and Health at Work (EU-OSHA) has launched its 2018-19 EU-wide campaign, Healthy Workplaces Manage Dangerous Substances.

HSE | 25.4.2018

Ensuring a Smooth Transition from OPC CLASSIC to OPC UA

Now, more than ever, industrial firms need to make sense of vast quantities of data having a critical impact on their performance. To support the variety of applications necessary today, information must be delivered with context so it can be understood and used in various ways by a variety of people. Growing adoption of the Industrial Internet of Things (IIoT) and Industrie 4.0 is also driving requirements for open and secure connectivity between devices and edge-to-cloud solutions.

Cmms | 30.3.2018

Is Your HMI/SCADA Network as Secure as You Think It Is?

Network security frequently makes the news, often when some new viral attack is discovered or, worse yet, is successful. HMI/SCADA networks can be as susceptible to these unlawful break-ins as any others, unless the proper precautions are taken. Many software and hardware vendors have made their own attempts to stay ahead of online criminals, while others have combined forces to thwart such attacks.

Partner Articles | 30.3.2018

Examples: Using Ultrasound and Infrared for Electrical Inspections

Ultrasound and infrared technologies are a perfect match when conducting inspections of electrical equipment. At any voltage, thermal anomalies and sources of ultrasound such as tracking and arcing can occur. Corona can also occur at 1000 volts and greater. Any of these conditions threaten the reliability of the equipment being inspected.

R&D | 29.3.2018

Maintenance: A Necessary and Important Function in the Future

Euromaintenance 2016 will take place in Athens at the end of May. It is the ideal moment to reflect on maintenance in a European context. Euromaintenance is known as the summit for all involved in maintenance across Europe, it’s the place to be. The conference, with the support of the EFNMS, is the only commercially independent conference covering the topics we deal with in the maintenance world.

EFNMS | 20.5.2016